Optimal Control for a Class of Differential Linear Repetitive Processes

نویسندگان

  • S. Dymkou
  • E. Rogers
  • M. Dymkov
  • D. H. Owens
چکیده

S. Dymkou, E. Rogers, M. Dymkov, K. Ga lkowski, D. H. Owens 1 ITMS, Ballarat University, Australia. 2 Department of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK. [email protected] 3 Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Belarus. 4 Institute of Control and Computation Engineering, University of Zielona Góra, Poland. 5 Department of Automatic Control and Systems Engineering, University of Sheffield, UK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

KYP lemma based stability and control law design for differential linear repetitive processes with applications

Repetitive processes are a class of two-dimensional systems that have physical applications, including the design of iterative learning control laws where experimental validation results have been reported. This paper uses the Kalman–Yakubovich–Popov lemma to develop new stability tests for differential linear repetitive processes that are computationally less intensive than those currently ava...

متن کامل

Stabilization of differential linear repetitive processes saturated systems by state feedback control

The stabilization of linear differential linear repetitive processes subject to saturating controls is addressed. Sufficient conditions obtained via a linear matrix inequality (LMI) formulation are stated to guarantee both the local stabilization and the satisfaction of some performance requirements. The method of synthesis consists in determining simultaneously a state feedback control law and...

متن کامل

A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems

In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...

متن کامل

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002